You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1285 lines
36 KiB

/*
* ws2811.c
*
* Copyright (c) 2014 Jeremy Garff <jer @ jers.net>
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* 3. Neither the name of the owner nor the names of its contributors may be used to endorse
* or promote products derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <signal.h>
#include <linux/types.h>
#include <linux/spi/spidev.h>
#include <time.h>
#include "mailbox.h"
#include "clk.h"
#include "gpio.h"
#include "dma.h"
#include "pwm.h"
#include "pcm.h"
#include "rpihw.h"
#include "ws2811.h"
#define BUS_TO_PHYS(x) ((x)&~0xC0000000)
#define OSC_FREQ 19200000 // crystal frequency
#define OSC_FREQ_PI4 54000000 // Pi 4 crystal frequency
/* 4 colors (R, G, B + W), 8 bits per byte, 3 symbols per bit + 55uS low for reset signal */
#define LED_COLOURS 4
#define LED_RESET_uS 55
#define LED_BIT_COUNT(leds, freq) ((leds * LED_COLOURS * 8 * 3) + ((LED_RESET_uS * \
(freq * 3)) / 1000000))
/* Minimum time to wait for reset to occur in microseconds. */
#define LED_RESET_WAIT_TIME 300
// Pad out to the nearest uint32 + 32-bits for idle low/high times the number of channels
#define PWM_BYTE_COUNT(leds, freq) (((((LED_BIT_COUNT(leds, freq) >> 3) & ~0x7) + 4) + 4) * \
RPI_PWM_CHANNELS)
#define PCM_BYTE_COUNT(leds, freq) ((((LED_BIT_COUNT(leds, freq) >> 3) & ~0x7) + 4) + 4)
// Symbol definitions
#define SYMBOL_HIGH 0x6 // 1 1 0
#define SYMBOL_LOW 0x4 // 1 0 0
// Symbol definitions for software inversion (PCM and SPI only)
#define SYMBOL_HIGH_INV 0x1 // 0 0 1
#define SYMBOL_LOW_INV 0x3 // 0 1 1
// Driver mode definitions
#define NONE 0
#define PWM 1
#define PCM 2
#define SPI 3
// We use the mailbox interface to request memory from the VideoCore.
// This lets us request one physically contiguous chunk, find its
// physical address, and map it 'uncached' so that writes from this
// code are immediately visible to the DMA controller. This struct
// holds data relevant to the mailbox interface.
typedef struct videocore_mbox {
int handle; /* From mbox_open() */
unsigned mem_ref; /* From mem_alloc() */
unsigned bus_addr; /* From mem_lock() */
unsigned size; /* Size of allocation */
uint8_t *virt_addr; /* From mapmem() */
} videocore_mbox_t;
typedef struct ws2811_device
{
int driver_mode;
volatile uint8_t *pxl_raw;
volatile dma_t *dma;
volatile pwm_t *pwm;
volatile pcm_t *pcm;
int spi_fd;
volatile dma_cb_t *dma_cb;
uint32_t dma_cb_addr;
volatile gpio_t *gpio;
volatile cm_clk_t *cm_clk;
videocore_mbox_t mbox;
int max_count;
} ws2811_device_t;
/**
* Provides monotonic timestamp in microseconds.
*
* @returns Current timestamp in microseconds or 0 on error.
*/
static uint64_t get_microsecond_timestamp()
{
struct timespec t;
if (clock_gettime(CLOCK_MONOTONIC_RAW, &t) != 0) {
return 0;
}
return (uint64_t) t.tv_sec * 1000000 + t.tv_nsec / 1000;
}
/**
* Iterate through the channels and find the largest led count.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns Maximum number of LEDs in all channels.
*/
static int max_channel_led_count(ws2811_t *ws2811)
{
int chan, max = 0;
for (chan = 0; chan < RPI_PWM_CHANNELS; chan++)
{
if (ws2811->channel[chan].count > max)
{
max = ws2811->channel[chan].count;
}
}
return max;
}
/**
* Map all devices into userspace memory.
* Not called for SPI
*
* @param ws2811 ws2811 instance pointer.
*
* @returns 0 on success, -1 otherwise.
*/
static int map_registers(ws2811_t *ws2811)
{
ws2811_device_t *device = ws2811->device;
const rpi_hw_t *rpi_hw = ws2811->rpi_hw;
uint32_t base = ws2811->rpi_hw->periph_base;
uint32_t dma_addr;
uint32_t offset = 0;
dma_addr = dmanum_to_offset(ws2811->dmanum);
if (!dma_addr)
{
return -1;
}
dma_addr += rpi_hw->periph_base;
device->dma = mapmem(dma_addr, sizeof(dma_t), DEV_MEM);
if (!device->dma)
{
return -1;
}
switch (device->driver_mode) {
case PWM:
device->pwm = mapmem(PWM_OFFSET + base, sizeof(pwm_t), DEV_MEM);
if (!device->pwm)
{
return -1;
}
break;
case PCM:
device->pcm = mapmem(PCM_OFFSET + base, sizeof(pcm_t), DEV_MEM);
if (!device->pcm)
{
return -1;
}
break;
}
/*
* The below call can potentially work with /dev/gpiomem instead.
* However, it used /dev/mem before, so I'm leaving it as such.
*/
device->gpio = mapmem(GPIO_OFFSET + base, sizeof(gpio_t), DEV_MEM);
if (!device->gpio)
{
return -1;
}
switch (device->driver_mode) {
case PWM:
offset = CM_PWM_OFFSET;
break;
case PCM:
offset = CM_PCM_OFFSET;
break;
}
device->cm_clk = mapmem(offset + base, sizeof(cm_clk_t), DEV_MEM);
if (!device->cm_clk)
{
return -1;
}
return 0;
}
/**
* Unmap all devices from virtual memory.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns None
*/
static void unmap_registers(ws2811_t *ws2811)
{
ws2811_device_t *device = ws2811->device;
if (device->dma)
{
unmapmem((void *)device->dma, sizeof(dma_t));
}
if (device->pwm)
{
unmapmem((void *)device->pwm, sizeof(pwm_t));
}
if (device->pcm)
{
unmapmem((void *)device->pcm, sizeof(pcm_t));
}
if (device->cm_clk)
{
unmapmem((void *)device->cm_clk, sizeof(cm_clk_t));
}
if (device->gpio)
{
unmapmem((void *)device->gpio, sizeof(gpio_t));
}
}
/**
* Given a userspace address pointer, return the matching bus address used by DMA.
* Note: The bus address is not the same as the CPU physical address.
*
* @param addr Userspace virtual address pointer.
*
* @returns Bus address for use by DMA.
*/
static uint32_t addr_to_bus(ws2811_device_t *device, const volatile void *virt)
{
videocore_mbox_t *mbox = &device->mbox;
uint32_t offset = (uint8_t *)virt - mbox->virt_addr;
return mbox->bus_addr + offset;
}
/**
* Stop the PWM controller.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns None
*/
static void stop_pwm(ws2811_t *ws2811)
{
ws2811_device_t *device = ws2811->device;
volatile pwm_t *pwm = device->pwm;
volatile cm_clk_t *cm_clk = device->cm_clk;
// Turn off the PWM in case already running
pwm->ctl = 0;
usleep(10);
// Kill the clock if it was already running
cm_clk->ctl = CM_CLK_CTL_PASSWD | CM_CLK_CTL_KILL;
usleep(10);
while (cm_clk->ctl & CM_CLK_CTL_BUSY)
;
}
/**
* Stop the PCM controller.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns None
*/
static void stop_pcm(ws2811_t *ws2811)
{
ws2811_device_t *device = ws2811->device;
volatile pcm_t *pcm = device->pcm;
volatile cm_clk_t *cm_clk = device->cm_clk;
// Turn off the PCM in case already running
pcm->cs = 0;
usleep(10);
// Kill the clock if it was already running
cm_clk->ctl = CM_CLK_CTL_PASSWD | CM_CLK_CTL_KILL;
usleep(10);
while (cm_clk->ctl & CM_CLK_CTL_BUSY)
;
}
/**
* Setup the PWM controller in serial mode on both channels using DMA to feed the PWM FIFO.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns None
*/
static int setup_pwm(ws2811_t *ws2811)
{
ws2811_device_t *device = ws2811->device;
volatile dma_t *dma = device->dma;
volatile dma_cb_t *dma_cb = device->dma_cb;
volatile pwm_t *pwm = device->pwm;
volatile cm_clk_t *cm_clk = device->cm_clk;
int maxcount = device->max_count;
uint32_t freq = ws2811->freq;
int32_t byte_count;
const rpi_hw_t *rpi_hw = ws2811->rpi_hw;
const uint32_t rpi_type = rpi_hw->type;
uint32_t osc_freq = OSC_FREQ;
if(rpi_type == RPI_HWVER_TYPE_PI4){
osc_freq = OSC_FREQ_PI4;
}
stop_pwm(ws2811);
// Setup the Clock - Use OSC @ 19.2Mhz w/ 3 clocks/tick
cm_clk->div = CM_CLK_DIV_PASSWD | CM_CLK_DIV_DIVI(osc_freq / (3 * freq));
cm_clk->ctl = CM_CLK_CTL_PASSWD | CM_CLK_CTL_SRC_OSC;
cm_clk->ctl = CM_CLK_CTL_PASSWD | CM_CLK_CTL_SRC_OSC | CM_CLK_CTL_ENAB;
usleep(10);
while (!(cm_clk->ctl & CM_CLK_CTL_BUSY))
;
// Setup the PWM, use delays as the block is rumored to lock up without them. Make
// sure to use a high enough priority to avoid any FIFO underruns, especially if
// the CPU is busy doing lots of memory accesses, or another DMA controller is
// busy. The FIFO will clock out data at a much slower rate (2.6Mhz max), so
// the odds of a DMA priority boost are extremely low.
pwm->rng1 = 32; // 32-bits per word to serialize
usleep(10);
pwm->ctl = RPI_PWM_CTL_CLRF1;
usleep(10);
pwm->dmac = RPI_PWM_DMAC_ENAB | RPI_PWM_DMAC_PANIC(7) | RPI_PWM_DMAC_DREQ(3);
usleep(10);
pwm->ctl = RPI_PWM_CTL_USEF1 | RPI_PWM_CTL_MODE1 |
RPI_PWM_CTL_USEF2 | RPI_PWM_CTL_MODE2;
if (ws2811->channel[0].invert)
{
pwm->ctl |= RPI_PWM_CTL_POLA1;
}
if (ws2811->channel[1].invert)
{
pwm->ctl |= RPI_PWM_CTL_POLA2;
}
usleep(10);
pwm->ctl |= RPI_PWM_CTL_PWEN1 | RPI_PWM_CTL_PWEN2;
// Initialize the DMA control block
byte_count = PWM_BYTE_COUNT(maxcount, freq);
dma_cb->ti = RPI_DMA_TI_NO_WIDE_BURSTS | // 32-bit transfers
RPI_DMA_TI_WAIT_RESP | // wait for write complete
RPI_DMA_TI_DEST_DREQ | // user peripheral flow control
RPI_DMA_TI_PERMAP(5) | // PWM peripheral
RPI_DMA_TI_SRC_INC; // Increment src addr
dma_cb->source_ad = addr_to_bus(device, device->pxl_raw);
dma_cb->dest_ad = (uintptr_t)&((pwm_t *)PWM_PERIPH_PHYS)->fif1;
dma_cb->txfr_len = byte_count;
dma_cb->stride = 0;
dma_cb->nextconbk = 0;
dma->cs = 0;
dma->txfr_len = 0;
return 0;
}
/**
* Setup the PCM controller with one 32-bit channel in a 32-bit frame using DMA to feed the PCM FIFO.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns None
*/
static int setup_pcm(ws2811_t *ws2811)
{
ws2811_device_t *device = ws2811->device;
volatile dma_t *dma = device->dma;
volatile dma_cb_t *dma_cb = device->dma_cb;
volatile pcm_t *pcm = device->pcm;
volatile cm_clk_t *cm_clk = device->cm_clk;
//int maxcount = max_channel_led_count(ws2811);
int maxcount = device->max_count;
uint32_t freq = ws2811->freq;
int32_t byte_count;
const rpi_hw_t *rpi_hw = ws2811->rpi_hw;
const uint32_t rpi_type = rpi_hw->type;
uint32_t osc_freq = OSC_FREQ;
if(rpi_type == RPI_HWVER_TYPE_PI4){
osc_freq = OSC_FREQ_PI4;
}
stop_pcm(ws2811);
// Setup the PCM Clock - Use OSC @ 19.2Mhz w/ 3 clocks/tick
cm_clk->div = CM_CLK_DIV_PASSWD | CM_CLK_DIV_DIVI(osc_freq / (3 * freq));
cm_clk->ctl = CM_CLK_CTL_PASSWD | CM_CLK_CTL_SRC_OSC;
cm_clk->ctl = CM_CLK_CTL_PASSWD | CM_CLK_CTL_SRC_OSC | CM_CLK_CTL_ENAB;
usleep(10);
while (!(cm_clk->ctl & CM_CLK_CTL_BUSY))
;
// Setup the PCM, use delays as the block is rumored to lock up without them. Make
// sure to use a high enough priority to avoid any FIFO underruns, especially if
// the CPU is busy doing lots of memory accesses, or another DMA controller is
// busy. The FIFO will clock out data at a much slower rate (2.6Mhz max), so
// the odds of a DMA priority boost are extremely low.
pcm->cs = RPI_PCM_CS_EN; // Enable PCM hardware
pcm->mode = (RPI_PCM_MODE_FLEN(31) | RPI_PCM_MODE_FSLEN(1));
// Framelength 32, clock enabled, frame sync pulse
pcm->txc = RPI_PCM_TXC_CH1WEX | RPI_PCM_TXC_CH1EN | RPI_PCM_TXC_CH1POS(0) | RPI_PCM_TXC_CH1WID(8);
// Single 32-bit channel
pcm->cs |= RPI_PCM_CS_TXCLR; // Reset transmit fifo
usleep(10);
pcm->cs |= RPI_PCM_CS_DMAEN; // Enable DMA DREQ
pcm->dreq = (RPI_PCM_DREQ_TX(0x3F) | RPI_PCM_DREQ_TX_PANIC(0x10)); // Set FIFO tresholds
// Initialize the DMA control block
byte_count = PCM_BYTE_COUNT(maxcount, freq);
dma_cb->ti = RPI_DMA_TI_NO_WIDE_BURSTS | // 32-bit transfers
RPI_DMA_TI_WAIT_RESP | // wait for write complete
RPI_DMA_TI_DEST_DREQ | // user peripheral flow control
RPI_DMA_TI_PERMAP(2) | // PCM TX peripheral
RPI_DMA_TI_SRC_INC; // Increment src addr
dma_cb->source_ad = addr_to_bus(device, device->pxl_raw);
dma_cb->dest_ad = (uintptr_t)&((pcm_t *)PCM_PERIPH_PHYS)->fifo;
dma_cb->txfr_len = byte_count;
dma_cb->stride = 0;
dma_cb->nextconbk = 0;
dma->cs = 0;
dma->txfr_len = 0;
return 0;
}
/**
* Start the DMA feeding the PWM FIFO. This will stream the entire DMA buffer out of both
* PWM channels.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns None
*/
static void dma_start(ws2811_t *ws2811)
{
ws2811_device_t *device = ws2811->device;
volatile dma_t *dma = device->dma;
volatile pcm_t *pcm = device->pcm;
uint32_t dma_cb_addr = device->dma_cb_addr;
dma->cs = RPI_DMA_CS_RESET;
usleep(10);
dma->cs = RPI_DMA_CS_INT | RPI_DMA_CS_END;
usleep(10);
dma->conblk_ad = dma_cb_addr;
dma->debug = 7; // clear debug error flags
dma->cs = RPI_DMA_CS_WAIT_OUTSTANDING_WRITES |
RPI_DMA_CS_PANIC_PRIORITY(15) |
RPI_DMA_CS_PRIORITY(15) |
RPI_DMA_CS_ACTIVE;
if (device->driver_mode == PCM)
{
pcm->cs |= RPI_PCM_CS_TXON; // Start transmission
}
}
/**
* Initialize the application selected GPIO pins for PWM/PCM operation.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns 0 on success, -1 on unsupported pin
*/
static int gpio_init(ws2811_t *ws2811)
{
volatile gpio_t *gpio = ws2811->device->gpio;
int chan;
int altnum;
for (chan = 0; chan < RPI_PWM_CHANNELS; chan++)
{
int pinnum = ws2811->channel[chan].gpionum;
if (pinnum)
{
switch (ws2811->device->driver_mode)
{
case PWM:
altnum = pwm_pin_alt(chan, pinnum);
break;
case PCM:
altnum = pcm_pin_alt(PCMFUN_DOUT, pinnum);
break;
default:
altnum = -1;
}
if (altnum < 0)
{
return -1;
}
gpio_function_set(gpio, pinnum, altnum);
}
}
return 0;
}
/**
* Initialize the PWM DMA buffer with all zeros, inverted operation will be
* handled by hardware. The DMA buffer length is assumed to be a word
* multiple.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns None
*/
void pwm_raw_init(ws2811_t *ws2811)
{
volatile uint32_t *pxl_raw = (uint32_t *)ws2811->device->pxl_raw;
int maxcount = ws2811->device->max_count;
int wordcount = (PWM_BYTE_COUNT(maxcount, ws2811->freq) / sizeof(uint32_t)) /
RPI_PWM_CHANNELS;
int chan;
for (chan = 0; chan < RPI_PWM_CHANNELS; chan++)
{
int i, wordpos = chan;
for (i = 0; i < wordcount; i++)
{
pxl_raw[wordpos] = 0x0;
wordpos += 2;
}
}
}
/**
* Initialize the PCM DMA buffer with all zeros.
* The DMA buffer length is assumed to be a word multiple.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns None
*/
void pcm_raw_init(ws2811_t *ws2811)
{
volatile uint32_t *pxl_raw = (uint32_t *)ws2811->device->pxl_raw;
int maxcount = ws2811->device->max_count;
int wordcount = PCM_BYTE_COUNT(maxcount, ws2811->freq) / sizeof(uint32_t);
int i;
for (i = 0; i < wordcount; i++)
{
pxl_raw[i] = 0x0;
}
}
/**
* Cleanup previously allocated device memory and buffers.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns None
*/
void ws2811_cleanup(ws2811_t *ws2811)
{
ws2811_device_t *device = ws2811->device;
int chan;
for (chan = 0; chan < RPI_PWM_CHANNELS; chan++)
{
if (ws2811->channel && ws2811->channel[chan].leds)
{
free(ws2811->channel[chan].leds);
}
ws2811->channel[chan].leds = NULL;
if (ws2811->channel && ws2811->channel[chan].gamma)
{
free(ws2811->channel[chan].gamma);
}
ws2811->channel[chan].gamma = NULL;
}
if (device->mbox.handle != -1)
{
videocore_mbox_t *mbox = &device->mbox;
unmapmem(mbox->virt_addr, mbox->size);
mem_unlock(mbox->handle, mbox->mem_ref);
mem_free(mbox->handle, mbox->mem_ref);
mbox_close(mbox->handle);
mbox->handle = -1;
}
if (device && (device->spi_fd > 0))
{
close(device->spi_fd);
}
if (device) {
free(device);
}
ws2811->device = NULL;
}
static int set_driver_mode(ws2811_t *ws2811, int gpionum)
{
int gpionum2;
if (gpionum == 18 || gpionum == 12) {
ws2811->device->driver_mode = PWM;
// Check gpio for PWM1 (2nd channel) is OK if used
gpionum2 = ws2811->channel[1].gpionum;
if (gpionum2 == 0 || gpionum2 == 13 || gpionum2 == 19) {
return 0;
}
}
else if (gpionum == 21 || gpionum == 31) {
ws2811->device->driver_mode = PCM;
}
else if (gpionum == 10) {
ws2811->device->driver_mode = SPI;
}
else {
fprintf(stderr, "gpionum %d not allowed\n", gpionum);
return -1;
}
// For PCM and SPI zero the 2nd channel
memset(&ws2811->channel[1], 0, sizeof(ws2811_channel_t));
return 0;
}
static int check_hwver_and_gpionum(ws2811_t *ws2811)
{
const rpi_hw_t *rpi_hw;
int hwver, gpionum;
int gpionums_B1[] = { 10, 18, 21 };
int gpionums_B2[] = { 10, 18, 31 };
int gpionums_40p[] = { 10, 12, 18, 21};
int i;
rpi_hw = ws2811->rpi_hw;
hwver = rpi_hw->hwver & 0x0000ffff;
gpionum = ws2811->channel[0].gpionum;
if (hwver < 0x0004) // Model B Rev 1
{
for ( i = 0; i < (int)(sizeof(gpionums_B1) / sizeof(gpionums_B1[0])); i++)
{
if (gpionums_B1[i] == gpionum) {
// Set driver mode (PWM, PCM, or SPI)
return set_driver_mode(ws2811, gpionum);
}
}
}
else if (hwver >= 0x0004 && hwver <= 0x000f) // Models B Rev2, A
{
for ( i = 0; i < (int)(sizeof(gpionums_B2) / sizeof(gpionums_B2[0])); i++)
{
if (gpionums_B2[i] == gpionum) {
// Set driver mode (PWM, PCM, or SPI)
return set_driver_mode(ws2811, gpionum);
}
}
}
else if (hwver >= 0x010) // Models B+, A+, 2B, 3B, Zero Zero-W
{
if ((ws2811->channel[0].count == 0) && (ws2811->channel[1].count > 0))
{
// Special case: nothing in channel 0, channel 1 only PWM1 allowed
// PWM1 only available on 40 pin GPIO interface
gpionum = ws2811->channel[1].gpionum;
if ((gpionum == 13) || (gpionum == 19))
{
ws2811->device->driver_mode = PWM;
return 0;
}
else {
return -1;
}
}
for ( i = 0; i < (int)(sizeof(gpionums_40p) / sizeof(gpionums_40p[0])); i++)
{
if (gpionums_40p[i] == gpionum) {
// Set driver mode (PWM, PCM, or SPI)
return set_driver_mode(ws2811, gpionum);
}
}
}
fprintf(stderr, "Gpio %d is illegal for LED channel 0\n", gpionum);
return -1;
}
static ws2811_return_t spi_init(ws2811_t *ws2811)
{
int spi_fd;
static uint8_t mode;
static uint8_t bits = 8;
uint32_t speed = ws2811->freq * 3;
ws2811_device_t *device = ws2811->device;
uint32_t base = ws2811->rpi_hw->periph_base;
int pinnum = ws2811->channel[0].gpionum;
spi_fd = open("/dev/spidev0.0", O_RDWR);
if (spi_fd < 0) {
fprintf(stderr, "Cannot open /dev/spidev0.0. spi_bcm2835 module not loaded?\n");
return WS2811_ERROR_SPI_SETUP;
}
device->spi_fd = spi_fd;
// SPI mode
if (ioctl(spi_fd, SPI_IOC_WR_MODE, &mode) < 0)
{
return WS2811_ERROR_SPI_SETUP;
}
if (ioctl(spi_fd, SPI_IOC_RD_MODE, &mode) < 0)
{
return WS2811_ERROR_SPI_SETUP;
}
// Bits per word
if (ioctl(spi_fd, SPI_IOC_WR_BITS_PER_WORD, &bits) < 0)
{
return WS2811_ERROR_SPI_SETUP;
}
if (ioctl(spi_fd, SPI_IOC_RD_BITS_PER_WORD, &bits) < 0)
{
return WS2811_ERROR_SPI_SETUP;
}
// Max speed Hz
if (ioctl(spi_fd, SPI_IOC_WR_MAX_SPEED_HZ, &speed) < 0)
{
return WS2811_ERROR_SPI_SETUP;
}
if (ioctl(spi_fd, SPI_IOC_RD_MAX_SPEED_HZ, &speed) < 0)
{
return WS2811_ERROR_SPI_SETUP;
}
// Initialize device structure elements to not used
// except driver_mode, spi_fd and max_count (already defined when spi_init called)
device->pxl_raw = NULL;
device->dma = NULL;
device->pwm = NULL;
device->pcm = NULL;
device->dma_cb = NULL;
device->dma_cb_addr = 0;
device->cm_clk = NULL;
device->mbox.handle = -1;
// Set SPI-MOSI pin
device->gpio = mapmem(GPIO_OFFSET + base, sizeof(gpio_t), DEV_GPIOMEM);
if (!device->gpio)
{
return WS2811_ERROR_SPI_SETUP;
}
gpio_function_set(device->gpio, pinnum, 0); // SPI-MOSI ALT0
// Allocate LED buffer
ws2811_channel_t *channel = &ws2811->channel[0];
channel->leds = malloc(sizeof(ws2811_led_t) * channel->count);
if (!channel->leds)
{
ws2811_cleanup(ws2811);
return WS2811_ERROR_OUT_OF_MEMORY;
}
memset(channel->leds, 0, sizeof(ws2811_led_t) * channel->count);
if (!channel->strip_type)
{
channel->strip_type=WS2811_STRIP_RGB;
}
// Set default uncorrected gamma table
if (!channel->gamma)
{
channel->gamma = malloc(sizeof(uint8_t) * 256);
int x;
for(x = 0; x < 256; x++){
channel->gamma[x] = x;
}
}
channel->wshift = (channel->strip_type >> 24) & 0xff;
channel->rshift = (channel->strip_type >> 16) & 0xff;
channel->gshift = (channel->strip_type >> 8) & 0xff;
channel->bshift = (channel->strip_type >> 0) & 0xff;
// Allocate SPI transmit buffer (same size as PCM)
device->pxl_raw = malloc(PCM_BYTE_COUNT(device->max_count, ws2811->freq));
if (device->pxl_raw == NULL)
{
ws2811_cleanup(ws2811);
return WS2811_ERROR_OUT_OF_MEMORY;
}
pcm_raw_init(ws2811);
return WS2811_SUCCESS;
}
static ws2811_return_t spi_transfer(ws2811_t *ws2811)
{
int ret;
struct spi_ioc_transfer tr;
memset(&tr, 0, sizeof(struct spi_ioc_transfer));
tr.tx_buf = (unsigned long)ws2811->device->pxl_raw;
tr.rx_buf = 0;
tr.len = PCM_BYTE_COUNT(ws2811->device->max_count, ws2811->freq);
ret = ioctl(ws2811->device->spi_fd, SPI_IOC_MESSAGE(1), &tr);
if (ret < 1)
{
fprintf(stderr, "Can't send spi message");
return WS2811_ERROR_SPI_TRANSFER;
}
return WS2811_SUCCESS;
}
/*
*
* Application API Functions
*
*/
/**
* Allocate and initialize memory, buffers, pages, PWM, DMA, and GPIO.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns 0 on success, -1 otherwise.
*/
ws2811_return_t ws2811_init(ws2811_t *ws2811)
{
ws2811_device_t *device;
const rpi_hw_t *rpi_hw;
int chan;
ws2811->rpi_hw = rpi_hw_detect();
if (!ws2811->rpi_hw)
{
return WS2811_ERROR_HW_NOT_SUPPORTED;
}
rpi_hw = ws2811->rpi_hw;
ws2811->device = malloc(sizeof(*ws2811->device));
if (!ws2811->device)
{
return WS2811_ERROR_OUT_OF_MEMORY;
}
memset(ws2811->device, 0, sizeof(*ws2811->device));
device = ws2811->device;
if (check_hwver_and_gpionum(ws2811) < 0)
{
return WS2811_ERROR_ILLEGAL_GPIO;
}
device->max_count = max_channel_led_count(ws2811);
if (device->driver_mode == SPI) {
return spi_init(ws2811);
}
// Determine how much physical memory we need for DMA
switch (device->driver_mode) {
case PWM:
device->mbox.size = PWM_BYTE_COUNT(device->max_count, ws2811->freq) +
sizeof(dma_cb_t);
break;
case PCM:
device->mbox.size = PCM_BYTE_COUNT(device->max_count, ws2811->freq) +
sizeof(dma_cb_t);
break;
}
// Round up to page size multiple
device->mbox.size = (device->mbox.size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
device->mbox.handle = mbox_open();
if (device->mbox.handle == -1)
{
return WS2811_ERROR_MAILBOX_DEVICE;
}
device->mbox.mem_ref = mem_alloc(device->mbox.handle, device->mbox.size, PAGE_SIZE,
rpi_hw->videocore_base == 0x40000000 ? 0xC : 0x4);
if (device->mbox.mem_ref == 0)
{
return WS2811_ERROR_OUT_OF_MEMORY;
}
device->mbox.bus_addr = mem_lock(device->mbox.handle, device->mbox.mem_ref);
if (device->mbox.bus_addr == (uint32_t) ~0UL)
{
mem_free(device->mbox.handle, device->mbox.size);
return WS2811_ERROR_MEM_LOCK;
}
device->mbox.virt_addr = mapmem(BUS_TO_PHYS(device->mbox.bus_addr), device->mbox.size, DEV_MEM);
if (!device->mbox.virt_addr)
{
mem_unlock(device->mbox.handle, device->mbox.mem_ref);
mem_free(device->mbox.handle, device->mbox.size);
ws2811_cleanup(ws2811);
return WS2811_ERROR_MMAP;
}
// Initialize all pointers to NULL. Any non-NULL pointers will be freed on cleanup.
device->pxl_raw = NULL;
device->dma_cb = NULL;
for (chan = 0; chan < RPI_PWM_CHANNELS; chan++)
{
ws2811->channel[chan].leds = NULL;
}
// Allocate the LED buffers
for (chan = 0; chan < RPI_PWM_CHANNELS; chan++)
{
ws2811_channel_t *channel = &ws2811->channel[chan];
channel->leds = malloc(sizeof(ws2811_led_t) * channel->count);
if (!channel->leds)
{
ws2811_cleanup(ws2811);
return WS2811_ERROR_OUT_OF_MEMORY;
}
memset(channel->leds, 0, sizeof(ws2811_led_t) * channel->count);
if (!channel->strip_type)
{
channel->strip_type=WS2811_STRIP_RGB;
}
// Set default uncorrected gamma table
if (!channel->gamma)
{
channel->gamma = malloc(sizeof(uint8_t) * 256);
int x;
for(x = 0; x < 256; x++){
channel->gamma[x] = x;
}
}
channel->wshift = (channel->strip_type >> 24) & 0xff;
channel->rshift = (channel->strip_type >> 16) & 0xff;
channel->gshift = (channel->strip_type >> 8) & 0xff;
channel->bshift = (channel->strip_type >> 0) & 0xff;
}
device->dma_cb = (dma_cb_t *)device->mbox.virt_addr;
device->pxl_raw = (uint8_t *)device->mbox.virt_addr + sizeof(dma_cb_t);
switch (device->driver_mode) {
case PWM:
pwm_raw_init(ws2811);
break;
case PCM:
pcm_raw_init(ws2811);
break;
}
memset((dma_cb_t *)device->dma_cb, 0, sizeof(dma_cb_t));
// Cache the DMA control block bus address
device->dma_cb_addr = addr_to_bus(device, device->dma_cb);
// Map the physical registers into userspace
if (map_registers(ws2811))
{
ws2811_cleanup(ws2811);
return WS2811_ERROR_MAP_REGISTERS;
}
// Initialize the GPIO pins
if (gpio_init(ws2811))
{
unmap_registers(ws2811);
ws2811_cleanup(ws2811);
return WS2811_ERROR_GPIO_INIT;
}
switch (device->driver_mode) {
case PWM:
// Setup the PWM, clocks, and DMA
if (setup_pwm(ws2811))
{
unmap_registers(ws2811);
ws2811_cleanup(ws2811);
return WS2811_ERROR_PWM_SETUP;
}
break;
case PCM:
// Setup the PCM, clock, and DMA
if (setup_pcm(ws2811))
{
unmap_registers(ws2811);
ws2811_cleanup(ws2811);
return WS2811_ERROR_PCM_SETUP;
}
break;
}
return WS2811_SUCCESS;
}
/**
* Shut down DMA, PWM, and cleanup memory.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns None
*/
void ws2811_fini(ws2811_t *ws2811)
{
volatile pcm_t *pcm = ws2811->device->pcm;
ws2811_wait(ws2811);
switch (ws2811->device->driver_mode) {
case PWM:
stop_pwm(ws2811);
break;
case PCM:
while (!(pcm->cs & RPI_PCM_CS_TXE)) ; // Wait till TX FIFO is empty
stop_pcm(ws2811);
break;
}
unmap_registers(ws2811);
ws2811_cleanup(ws2811);
}
/**
* Wait for any executing DMA operation to complete before returning.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns 0 on success, -1 on DMA competion error
*/
ws2811_return_t ws2811_wait(ws2811_t *ws2811)
{
volatile dma_t *dma = ws2811->device->dma;
if (ws2811->device->driver_mode == SPI) // Nothing to do for SPI
{
return WS2811_SUCCESS;
}
while ((dma->cs & RPI_DMA_CS_ACTIVE) &&
!(dma->cs & RPI_DMA_CS_ERROR))
{
usleep(10);
}
if (dma->cs & RPI_DMA_CS_ERROR)
{
fprintf(stderr, "DMA Error: %08x\n", dma->debug);
return WS2811_ERROR_DMA;
}
return WS2811_SUCCESS;
}
/**
* Render the DMA buffer from the user supplied LED arrays and start the DMA
* controller. This will update all LEDs on both PWM channels.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns None
*/
ws2811_return_t ws2811_render(ws2811_t *ws2811)
{
volatile uint8_t *pxl_raw = ws2811->device->pxl_raw;
int driver_mode = ws2811->device->driver_mode;
int bitpos;
int i, k, l, chan;
unsigned j;
ws2811_return_t ret = WS2811_SUCCESS;
uint32_t protocol_time = 0;
static uint64_t previous_timestamp = 0;
bitpos = (driver_mode == SPI ? 7 : 31);
for (chan = 0; chan < RPI_PWM_CHANNELS; chan++) // Channel
{
ws2811_channel_t *channel = &ws2811->channel[chan];
int wordpos = chan; // PWM & PCM
int bytepos = 0; // SPI
const int scale = (channel->brightness & 0xff) + 1;
uint8_t array_size = 3; // Assume 3 color LEDs, RGB
// If our shift mask includes the highest nibble, then we have 4 LEDs, RBGW.
if (channel->strip_type & SK6812_SHIFT_WMASK)
{
array_size = 4;
}
// 1.25µs per bit
const uint32_t channel_protocol_time = channel->count * array_size * 8 * 1.25;
// Only using the channel which takes the longest as both run in parallel
if (channel_protocol_time > protocol_time)
{
protocol_time = channel_protocol_time;
}
for (i = 0; i < channel->count; i++) // Led
{
uint8_t color[] =
{
channel->gamma[(((channel->leds[i] >> channel->rshift) & 0xff) * scale) >> 8], // red
channel->gamma[(((channel->leds[i] >> channel->gshift) & 0xff) * scale) >> 8], // green
channel->gamma[(((channel->leds[i] >> channel->bshift) & 0xff) * scale) >> 8], // blue
channel->gamma[(((channel->leds[i] >> channel->wshift) & 0xff) * scale) >> 8], // white
};
for (j = 0; j < array_size; j++) // Color
{
for (k = 7; k >= 0; k--) // Bit
{
// Inversion is handled by hardware for PWM, otherwise by software here
uint8_t symbol = SYMBOL_LOW;
if ((driver_mode != PWM) && channel->invert) symbol = SYMBOL_LOW_INV;
if (color[j] & (1 << k))
{
symbol = SYMBOL_HIGH;
if ((driver_mode != PWM) && channel->invert) symbol = SYMBOL_HIGH_INV;
}
for (l = 2; l >= 0; l--) // Symbol
{
uint32_t *wordptr = &((uint32_t *)pxl_raw)[wordpos]; // PWM & PCM
volatile uint8_t *byteptr = &pxl_raw[bytepos]; // SPI
if (driver_mode == SPI)
{
*byteptr &= ~(1 << bitpos);
if (symbol & (1 << l))
{
*byteptr |= (1 << bitpos);
}
}
else // PWM & PCM
{
*wordptr &= ~(1 << bitpos);
if (symbol & (1 << l))
{
*wordptr |= (1 << bitpos);
}
}
bitpos--;
if (bitpos < 0)
{
if (driver_mode == SPI)
{
bytepos++;
bitpos = 7;
}
else // PWM & PCM
{
// Every other word is on the same channel for PWM
wordpos += (driver_mode == PWM ? 2 : 1);
bitpos = 31;
}
}
}
}
}
}
}
// Wait for any previous DMA operation to complete.
if ((ret = ws2811_wait(ws2811)) != WS2811_SUCCESS)
{
return ret;
}
if (ws2811->render_wait_time != 0) {
const uint64_t current_timestamp = get_microsecond_timestamp();
uint64_t time_diff = current_timestamp - previous_timestamp;
if (ws2811->render_wait_time > time_diff) {
usleep(ws2811->render_wait_time - time_diff);
}
}
if (driver_mode != SPI)
{
dma_start(ws2811);
}
else
{
ret = spi_transfer(ws2811);
}
// LED_RESET_WAIT_TIME is added to allow enough time for the reset to occur.
previous_timestamp = get_microsecond_timestamp();
ws2811->render_wait_time = protocol_time + LED_RESET_WAIT_TIME;
return ret;
}
const char * ws2811_get_return_t_str(const ws2811_return_t state)
{
const int index = -state;
static const char * const ret_state_str[] = { WS2811_RETURN_STATES(WS2811_RETURN_STATES_STRING) };
if (index < (int)(sizeof(ret_state_str) / sizeof(ret_state_str[0])))
{
return ret_state_str[index];
}
return "";
}