Initial commit

master
Davide Bongiovanni 4 years ago
parent 142af335a5
commit bbefbb25dd

@ -1,3 +1,3 @@
# autowaterer
Automatic watering system based on ESP8266 and MQTT for easy Home Assistant integration.
Homebrew automatic watering system based on ESP8266 and MQTT, for easy Home Assistant integration.

@ -0,0 +1,39 @@
This directory is intended for project header files.
A header file is a file containing C declarations and macro definitions
to be shared between several project source files. You request the use of a
header file in your project source file (C, C++, etc) located in `src` folder
by including it, with the C preprocessing directive `#include'.
```src/main.c
#include "header.h"
int main (void)
{
...
}
```
Including a header file produces the same results as copying the header file
into each source file that needs it. Such copying would be time-consuming
and error-prone. With a header file, the related declarations appear
in only one place. If they need to be changed, they can be changed in one
place, and programs that include the header file will automatically use the
new version when next recompiled. The header file eliminates the labor of
finding and changing all the copies as well as the risk that a failure to
find one copy will result in inconsistencies within a program.
In C, the usual convention is to give header files names that end with `.h'.
It is most portable to use only letters, digits, dashes, and underscores in
header file names, and at most one dot.
Read more about using header files in official GCC documentation:
* Include Syntax
* Include Operation
* Once-Only Headers
* Computed Includes
https://gcc.gnu.org/onlinedocs/cpp/Header-Files.html

@ -0,0 +1,79 @@
#ifndef MAIN_H
#define MAIN_H
// Messages on the pump command topic have format
// {"id" : <id> , "enable" : <enable> , "timeout" : <timeout>}
// Allows external control of the pumps
#define TOPIC_PUMP_COMMAND "home/devices/autowaterer/pump_command"
#define TOPIC_COMMAND_RESULT "home/devices/autowaterer/command_result"
#define CMD_OK "0"
#define PUMP_CMD_ERR_INVALID_JSON "1"
#define PUMP_CMD_ERR_INVALID_PUMP_ID "2"
#define PUMP_CMD_ERR_TOO_MANY_PUMPS "3"
#define PUMP_CMD_ERR_PUMP_ALREADY_ON "4"
#define BURST_CMD_TOO_MANY_ITERATIONS "5"
#define CALRST_CMD_INVALID_SENSOR_ID "6"
// Messages on the moisture sensor topic have format
/*
* {
* "sensor_a" : {"level" : <level%>},
* "sensor_b" : {"level" : <level%>},
* "sensor_c" : {"level" : <level%>},
* "sensor_d" : {"level" : <level%>},
* "sensor_e" : {"level" : <level%>},
* "sensor_f" : {"level" : <level%>},
* }
*/
#define TOPIC_LOG "home/devices/autowaterer/log" // General log messages
#define MAX_PUMP_TIMEOUT 30
#define GPIO_PUMPS_PORT GPIO_EXPANDER_PORT_A
#define GPIO_PUMP_ENABLE_1 0
#define GPIO_PUMP_ENABLE_2 1
#define GPIO_PUMP_ENABLE_3 2
#define GPIO_PUMP_ENABLE_4 3
#define GPIO_PUMP_ENABLE_5 4
#define GPIO_PUMP_ENABLE_6 5
#define PUMPS_COUNT 8
#define MAX_ACTIVE_PUMPS 4
#define TOPIC_MOISTURE_SENSORS "home/devices/autowaterer/moisture_sensors/" // Topic stub for publishing availability and values of sensors
#define SENSOR_A_ADDR 0x61
#define SENSOR_B_ADDR 0x62
#define SENSOR_C_ADDR 0x63
#define SENSOR_D_ADDR 0x64
#define SENSOR_E_ADDR 0x65
#define SENSOR_F_ADDR 0x66
#define SENSOR_ADDR_START 'a'
#define SENSORS_COUNT 6
#define SENSORS_UPDATE_INTERVAL 60
#define TOPIC_SENSOR_BURST "home/devices/autowaterer/moisture_sensors/burst" // Publishing a number n here will cause the device to read sensors faster for n loop cycles
#define TOPIC_CALIBRATION_RESET "home/devices/autowaterer/moisture_sensors/cal_reset" // Publishing an address here will reset the min/max values for the sensor at that address
#define ONLINE 1
#define OFFLINE 0
#define GPIO_EXPANDER_ADDR 0x20
#define GPIO_EXPANDER_PORT_A 0x12
#define GPIO_EXPANDER_PORT_B 0x13
#define GPIO_EXPANDER_DIR_A 0x00
#define GPIO_EXPANDER_DIR_B 0x01
#define I2C_SUCCESS 0
#define I2C_ADDRESS_NACK 2
#define I2C_DATA_NACK 3
#define RS485_OUTPUT_ENABLE D5
#define RS485_ERROR_TIMEOUT 0xFFFF
#define RS485_MAX_INT 0x0FFF
#define NTP_OFFSET 60 * 60 // In seconds
#define NTP_INTERVAL 60 * 1000 // In miliseconds
#define NTP_ADDRESS "europe.pool.ntp.org"
#endif

@ -0,0 +1,46 @@
This directory is intended for project specific (private) libraries.
PlatformIO will compile them to static libraries and link into executable file.
The source code of each library should be placed in a an own separate directory
("lib/your_library_name/[here are source files]").
For example, see a structure of the following two libraries `Foo` and `Bar`:
|--lib
| |
| |--Bar
| | |--docs
| | |--examples
| | |--src
| | |- Bar.c
| | |- Bar.h
| | |- library.json (optional, custom build options, etc) https://docs.platformio.org/page/librarymanager/config.html
| |
| |--Foo
| | |- Foo.c
| | |- Foo.h
| |
| |- README --> THIS FILE
|
|- platformio.ini
|--src
|- main.c
and a contents of `src/main.c`:
```
#include <Foo.h>
#include <Bar.h>
int main (void)
{
...
}
```
PlatformIO Library Dependency Finder will find automatically dependent
libraries scanning project source files.
More information about PlatformIO Library Dependency Finder
- https://docs.platformio.org/page/librarymanager/ldf.html

@ -0,0 +1,15 @@
; PlatformIO Project Configuration File
;
; Build options: build flags, source filter
; Upload options: custom upload port, speed and extra flags
; Library options: dependencies, extra library storages
; Advanced options: extra scripting
;
; Please visit documentation for the other options and examples
; https://docs.platformio.org/page/projectconf.html
[env:d1_mini]
platform = espressif8266
board = d1_mini
framework = arduino
monitor_speed = 115200

@ -0,0 +1,301 @@
#include <main.h>
#include <string.h>
#include <Arduino.h>
#include <ESP8266WiFi.h>
#include <PubSubClient.h>
#include <ArduinoJson.h>
#include <Wire.h> // I2C library. Who thought "Wire" was a good name for it?
#include <WiFiUdp.h>
#include <NTPClient.h>
const char* ssid = "xxx";
const char* password = "xxx";
const char* mqttServer = "xxx";
const int mqttPort = 1883;
WiFiClient espClient;
PubSubClient client(espClient);
WiFiUDP ntpUDP;
NTPClient timeClient(ntpUDP, NTP_ADDRESS, NTP_OFFSET, NTP_INTERVAL);
uint8_t gpioa_state = 0;
unsigned long timeouts[PUMPS_COUNT];
unsigned long last_sensor_update = 0;
uint16_t sensor_max[SENSORS_COUNT];
uint16_t sensor_min[SENSORS_COUNT];
uint16_t sensor_burst = 0;
uint8_t active_bits(uint8_t v) {
uint8_t c;
for (c = 0; v; v >>= 1)
c += v & 1;
return v;
}
void adjust_calibration(uint16_t v, uint8_t i) {
if (v < sensor_min[i])
sensor_min[i] = v;
if (v > sensor_max[i])
sensor_max[i] = v;
}
void publish_availability(uint8_t address, uint8_t available) {
char t[60];
sprintf(t, "%s%c/available", TOPIC_MOISTURE_SENSORS, address);
if (available)
client.publish(t, "online");
else
client.publish(t, "offline");
}
void publish_sensor_value(uint8_t address, uint16_t v) {
char vstr[10];
char t[60];
sprintf(t, "%s%c/value", TOPIC_MOISTURE_SENSORS, address);
sprintf(vstr, "%d", v);
client.publish(t, vstr);
}
uint16_t read_sensor(uint8_t address) {
// Transmit address
digitalWrite(RS485_OUTPUT_ENABLE, HIGH);
Serial.write(address);
Serial.flush();
digitalWrite(RS485_OUTPUT_ENABLE, LOW);
Serial.read(); // Receiver is always enabled, so the first read byte is the address we just sent
uint8_t value[2];
size_t l = Serial.readBytes(value, 2); // Blocking read of 2 bytes. Timeout defaults to 1000 ms. Returns number of bytes read
if (l < 2)
return RS485_ERROR_TIMEOUT; // This value (0xFFFF) can never be the ADC result, so it will be our error code
// Reconstruct the read value
return ((uint16_t)value[0] << 8) | value[1];
}
void update_sensors() {
uint16_t v;
// Make sure the uart input buffer is empty
while(Serial.available() > 0)
Serial.read();
for (uint8_t i = 0; i < SENSORS_COUNT; i++) {
uint8_t address = (uint8_t)SENSOR_ADDR_START + i;
v = read_sensor(address);
if (v <= RS485_MAX_INT) {
adjust_calibration(v, i);
v = map(v, sensor_min[i], sensor_max[i], 0, 100);
publish_availability(address, ONLINE);
publish_sensor_value(address, v);
} else {
publish_availability(address, OFFLINE);
}
}
}
void gpio_expander_setup() { // Set PORTA channels to output
Wire.beginTransmission(GPIO_EXPANDER_ADDR);
Wire.write(GPIO_EXPANDER_DIR_A);
Wire.write(0x00); // All ouptuts
Wire.endTransmission();
}
void gpio_expander_set_pin(int pin) {
if (pin > 7)
return;
gpioa_state |= (1 << pin);
Wire.beginTransmission(GPIO_EXPANDER_ADDR);
Wire.write(GPIO_EXPANDER_PORT_A);
Wire.write(gpioa_state);
uint8_t i2c_error = Wire.endTransmission();
if (i2c_error != I2C_SUCCESS) {
if (i2c_error == I2C_ADDRESS_NACK) {
char m[50];
sprintf(m, "ERROR: No device at address %X", GPIO_EXPANDER_ADDR);
client.publish(TOPIC_LOG, m);
} else if (i2c_error == I2C_DATA_NACK) {
client.publish(TOPIC_LOG, "ERROR: Invalid data on I2C bus");
}
}
}
void gpio_expander_clear_pin(int pin) {
if (pin > 7)
return;
gpioa_state &= ~(1 << pin);
Wire.beginTransmission(GPIO_EXPANDER_ADDR);
Wire.write(GPIO_EXPANDER_PORT_A);
Wire.write(gpioa_state);
uint8_t i2c_error = Wire.endTransmission();
if (i2c_error != I2C_SUCCESS) {
if (i2c_error == I2C_ADDRESS_NACK) {
char m[50];
sprintf(m, "ERROR: No device at address %X", GPIO_EXPANDER_ADDR);
client.publish(TOPIC_LOG, m);
} else if (i2c_error == I2C_DATA_NACK) {
client.publish(TOPIC_LOG, "ERROR: Invalid data on I2C bus");
}
}
}
void recv_callback(char* topic, byte* payload, unsigned int length) {
if (!strcmp(topic, TOPIC_PUMP_COMMAND)) { // strcmp returns 0 if the strings are equal
// The payload is in the form {"id":<id>;"enable":<enable>;"timeout":<timeout>}
const int capacity = JSON_OBJECT_SIZE(3);
StaticJsonDocument<capacity> p;
DeserializationError err = deserializeJson(p, payload);
if (err == DeserializationError::Ok) {
uint8_t pump_id = p["id"].as<int>();
if (pump_id > PUMPS_COUNT - 1) {
client.publish(TOPIC_LOG, "ERROR: Invalid pump id");
client.publish(TOPIC_COMMAND_RESULT, PUMP_CMD_ERR_INVALID_PUMP_ID);
return;
}
if (p["enable"].as<int>()) {
int t = 30;
if (p["timeout"].as<int>() < MAX_PUMP_TIMEOUT)
t = p["timeout"].as<int>();
if ((gpioa_state >> pump_id) & 1) {
client.publish(TOPIC_LOG, "WARNING: Selected pump is already on");
client.publish(TOPIC_COMMAND_RESULT, PUMP_CMD_ERR_PUMP_ALREADY_ON);
return;
}
if (active_bits(gpioa_state) > MAX_ACTIVE_PUMPS) {
client.publish(TOPIC_LOG, "ERROR: Too many pumps are already active");
client.publish(TOPIC_COMMAND_RESULT, PUMP_CMD_ERR_TOO_MANY_PUMPS);
return;
}
gpio_expander_set_pin(pump_id);
timeouts[pump_id] = timeClient.getEpochTime() + t;
// Log operation
char log[50];
sprintf(log, "INFO: Turned on pump %d for %d seconds", pump_id + 1, t);
client.publish(TOPIC_LOG, log);
client.publish(TOPIC_COMMAND_RESULT, CMD_OK);
} else {
if (!((gpioa_state >> pump_id) & 1)) {
client.publish(TOPIC_LOG, "WARNING: Selected pump is already off");
return;
}
gpio_expander_clear_pin(pump_id);
// Log operation
char log[50];
sprintf(log, "INFO: Turned off pump %d", pump_id + 1);
client.publish(TOPIC_LOG, log);
client.publish(TOPIC_COMMAND_RESULT, CMD_OK);
}
} else {
client.publish(TOPIC_LOG, "ERROR: Invalid JSON");
client.publish(TOPIC_COMMAND_RESULT, PUMP_CMD_ERR_INVALID_JSON);
}
} else if (!strcmp(topic, TOPIC_SENSOR_BURST)){
if (length > 4) {
client.publish(TOPIC_LOG, "ERROR: Invalid sensor burst iteration count. Max iterations: 9999");
client.publish(TOPIC_COMMAND_RESULT, BURST_CMD_TOO_MANY_ITERATIONS);
return;
}
char pstr[5];
uint8_t i;
for (i = 0; i < length; i++) {
pstr[i] = (char)payload[i];
}
pstr[i] = 0;
sensor_burst = atoi((char*)pstr);
client.publish(TOPIC_COMMAND_RESULT, CMD_OK);
} else if (!strcmp(topic, TOPIC_CALIBRATION_RESET)) {
if (length > 1) {
client.publish(TOPIC_LOG, "ERROR: Only signle-byte addresses allowed");
client.publish(TOPIC_COMMAND_RESULT, CALRST_CMD_INVALID_SENSOR_ID);
return;
}
uint8_t i = (uint8_t)payload[0] - SENSOR_ADDR_START;
sensor_max[i] = 0;
sensor_min[i] = RS485_MAX_INT;
char m[50];
sprintf(m, "Cal of sensor at %X reset", i+SENSOR_ADDR_START);
client.publish(TOPIC_LOG, m);
client.publish(TOPIC_COMMAND_RESULT, CMD_OK);
} else {
// Received a message on a topic we didn't subscribe to hmm
}
}
void setup() {
for (int i = 0; i < SENSORS_COUNT; i++) {
sensor_max[i] = 0;
sensor_min[i] = RS485_MAX_INT;
}
Serial.begin(115200);
WiFi.begin(ssid, password);
Wire.begin();
while (WiFi.status() != WL_CONNECTED) {
delay(500);
// Serial.print("Connecting to WiFi..");
}
// Serial.println("Connected to the WiFi network");
client.setServer(mqttServer, mqttPort);
client.setCallback(recv_callback);
while (!client.connected()) {
// Serial.println("Connecting to MQTT...");
if (client.connect("autowaterer")) {
// Serial.println("connected");
} else {
// Serial.print("failed with state ");
// Serial.print(client.state());
delay(2000);
}
}
gpio_expander_setup();
// Publish and subscribe examples
// client.publish("esp/test", "Hello from ESP8266");
client.subscribe(TOPIC_PUMP_COMMAND);
client.subscribe(TOPIC_SENSOR_BURST);
client.subscribe(TOPIC_CALIBRATION_RESET);
timeClient.begin();
}
void loop() {
client.loop(); // Should be called regularly
timeClient.update();
unsigned long now = timeClient.getEpochTime();
for (int i = 0; i < PUMPS_COUNT; i++) {
if ((gpioa_state >> i) & 1) {
if (timeouts[i] < now) {
gpio_expander_clear_pin(i);
char log[50];
sprintf(log, "INFO: Turned off pump %d", i + 1);
client.publish(TOPIC_LOG, log);
}
}
}
if (sensor_burst > 0) { // Update sensors every 200ms, sensor_burst times
sensor_burst--;
update_sensors();
} else if (now - last_sensor_update > SENSORS_UPDATE_INTERVAL) {
last_sensor_update = now;
update_sensors();
}
delay(200);
}

@ -0,0 +1,11 @@
This directory is intended for PIO Unit Testing and project tests.
Unit Testing is a software testing method by which individual units of
source code, sets of one or more MCU program modules together with associated
control data, usage procedures, and operating procedures, are tested to
determine whether they are fit for use. Unit testing finds problems early
in the development cycle.
More information about PIO Unit Testing:
- https://docs.platformio.org/page/plus/unit-testing.html
Loading…
Cancel
Save